Homework 3; Due Wednesday, 09/21/2016

Answer-Only Questions. Credit based solely on the answer.

Question 1. Construct truth tables for the following:
(a) $\operatorname{not}(A$ and $(\operatorname{not} B))$,

Solution.

A	B	A and $(\operatorname{not} B)$	$\operatorname{not}(A$ and $(\operatorname{not} B))$
T	T		
T	F		
F	T		
F	F		

(b) $\operatorname{not}(A$ and $B)$,
(c) $(\operatorname{not} A)$ and $(\operatorname{not} B)$,
(d) $(A$ and $(\operatorname{not} B))$ or $(B$ and $(\operatorname{not} A))$

Question 2. Negate the following:
(a) A is true and B is false.
(b) A is false or B is true.
(c) A is true and B is true.
(d) A is true or B is true.

Question 3. Construct truth tables for the following:
(a) A or $(B$ and $C)$,

Solution.

A	B	C	B or C	A and $(B$ or $C)$
T	T	T		
T	T	F		
T	F	T		
T	F	F		
F	T	T		
F	T	F		
F	F	T		
F	F	F		

(b) $(A$ or $B)$ and $(\operatorname{not} C)$,

Question 4. List all possible different functions $f:\{a, b, c\} \rightarrow\{1,2\}$
Solution.

x	$f_{1}(x)$
a	1
b	1
c	1

Medium-Answer Questions. Provide brief justifications for your responses.

Question 5. Which of the following are statements? Explain.
(a) Pythagorus was friendly.
(b) There exists some number x such that $e^{x}=1-x^{2}$.
(c) The square root of every positive integer is an irrational number.
(d) Aristotle was Greek.
(e) There are an infinite number of prime numbers.
(f) $x^{2}-x+1=0$.
(g) Let n be an integer. Then n is either even or odd.
(h) The number $\sqrt{5}$ is rational.

Question 6. Let $F:[2,1+e] \rightarrow[0,1]$ be the function defined via the assignment $F(x)=\ln (x-1)$.
(a) Show that F is a bijection.
(b) Compute the function F^{-1} and state the domain and range of F^{-1}.

Full Proof Questions. Provide complete justifications for your responses.

Question 7. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(\left(x^{4}+1\right) y, x-1\right)$.

1. Show that f is bijective.
2. Find the inverse function of f, and carefully justify that this is the inverse.

Question 8. Consider the function $D: \mathbb{P}_{4} \rightarrow \mathbb{P}_{3}$, given by taking the derivative. That is, for a polynomial f, it is defined as $D(f)=\frac{d f}{d x}$.

1. Prove that D is surjective.
2. Prove that D is not injective.

Question 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=e^{c x}$ for some constant $c \in \mathbb{R}$ (not zero). Prove, using induction, that $f^{(n)}(x)=c^{n} e^{c x}$. (Note that by $f^{(n)}$, we mean the nth derivative of f.)
You should only use the following facts (it is possible you don't use all of them) in your argument:
(i) $\frac{d}{d x} e^{x}=e^{x}$
(ii) the chain rule
(iii) the product rule
(iv) if c is a constant, then $\frac{d}{d x} c=0$.

Question 10. Prove that $n+3<5 n^{2}$ for any integer $n \geq 1$.
Hint: Use induction.
Question 11. Prove, using induction, that for any $r \in \mathbb{R}$ with $r \neq 1$, and any integer $n \geq 0$,

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
$$

