Homework 3; Due Wednesday, 09/21/2016

Answer-Only Questions. Credit based solely on the answer.

Question 1. Construct truth tables for the following:

(a) not(A and (not B)),

Solution.

Solution.						
A	B	A and (not B)	not(A and (not B))			
Т	Т					
Т	F					
F	Т					
F	F					

- (b) not(A and B),
- (c) (not A) and (not B),
- (d) (A and (not B)) or (B and (not A))

Question 2. Negate the following:

- (a) A is true and B is false.
- (b) A is false or B is true.
- (c) A is true and B is true.
- (d) A is true or B is true.

Question 3. Construct truth tables for the following:

(a) A or (B and C),

Solution.					
A	B	C	$B ext{ or } C$	A and $(B \text{ or } C)$	
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

(b) (A or B) and (not C),

Question 4. List all possible different functions $f : \{a, b, c\} \rightarrow \{1, 2\}$

Solution.

- $\begin{array}{c|c} x & f_1(x) \\ \hline a & 1 \\ b & 1 \end{array}$
- c | 1

Medium-Answer Questions. Provide brief justifications for your responses.

Question 5. Which of the following are statements? Explain.

- (a) Pythagorus was friendly.
- (b) There exists some number x such that $e^x = 1 x^2$.
- (c) The square root of every positive integer is an irrational number.
- (d) Aristotle was Greek.
- (e) There are an infinite number of prime numbers.
- (f) $x^2 x + 1 = 0$.
- (g) Let n be an integer. Then n is either even or odd.
- (h) The number $\sqrt{5}$ is rational.

Question 6. Let $F: [2, 1+e] \rightarrow [0, 1]$ be the function defined via the assignment $F(x) = \ln(x-1)$.

- (a) Show that F is a bijection.
- (b) Compute the function F^{-1} and state the domain and range of F^{-1} .

Full Proof Questions. Provide complete justifications for your responses.

Question 7. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = ((x^4 + 1)y, x - 1)$.

- 1. Show that f is bijective.
- 2. Find the inverse function of f, and carefully justify that this is the inverse.

Question 8. Consider the function $D: \mathbb{P}_4 \to \mathbb{P}_3$, given by taking the derivative. That is, for a polynomial f, it is defined as $D(f) = \frac{df}{dx}$.

- 1. Prove that D is surjective.
- 2. Prove that D is *not* injective.

Question 9. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = e^{cx}$ for some constant $c \in \mathbb{R}$ (not zero). Prove, using induction, that $f^{(n)}(x) = c^n e^{cx}$. (Note that by $f^{(n)}$, we mean the nth derivative of f.) You should only use the following facts (it is possible you don't use all of them) in your argument:

(i)
$$\frac{d}{dx}e^x = e^x$$

- (ii) the chain rule
- (iii) the product rule

(iv) if c is a constant, then $\frac{d}{dx}c = 0$.

Question 10. Prove that $n + 3 < 5n^2$ for any integer $n \ge 1$. **Hint:** Use induction.

Question 11. Prove, using induction, that for any $r \in \mathbb{R}$ with $r \neq 1$, and any integer $n \geq 0$,

$$\sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$$